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Abstract

Tractography algorithms for diffusion tensor (DT) images consecutively connect directions of maximal diffusion across neighboring DTs

in order to reconstruct the 3-dimensional trajectories of white matter tracts in vivo in the human brain. The performance of these algorithms,

however, is strongly influenced by the amount of noise in the images and by the presence of degenerate tensors — i.e., tensors in which the

direction of maximal diffusion is poorly defined. We propose a simple procedure for the classification of tensor morphologies that uses test

statistics based on invariant measures of DTs, such as fractional anisotropy, while accounting for the effects of noise on tensor estimates.

Examining DT images from seven human subjects, we demonstrate that this procedure validly classifies DTs at each voxel into standard types

(nondegenerate DTs, as well as degenerate oblate, prolate or isotropic DTs), and we provide preliminary estimates for the prevalence and

spatial distribution of degenerate tensors in these brains. We also show that the P values for test statistics are more sensitive tools for

classifying tensor morphologies than are invariant measures of anisotropy alone.

D 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Water molecules in the human brain are known to

diffuse preferentially along the dominant orientation of

white matter (WM) fiber tracts [1–3]. Thus, diffusion

tensor imaging (DTI), which tracks the diffusion of

water, can be used to map accurately in vivo the

structure and orientation of fiber tracts in the WM of

the brain. The directional dependence of diffusion in

each voxel can be characterized by a 3�3 matrix, called

a diffusion tensor (DT). In a spectral value decomposi-

tion of a DT D, eigenvectors denote the three directions

of diffusion, and the corresponding eigenvalues represent
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the diffusivity of water in each of these three directions

[1–3]. Many tractography algorithms attempt to recon-

struct major fiber tracts within the human brain by

connecting neighboring tensors consecutively along their

principal directions (PD) of diffusion [4–11], i.e., the

primary direction in which the water molecules in a

given voxel diffuse. The reliability and validity of these

tractography algorithms therefore depend critically on

whether they can successfully determine the correct PD

of diffusion in the presence of the noise that is inherent

to DT images.

The noise in DT images derives ultimately from the

noise present in the set of diffusion-weighted (DW) images

from which the DT images are constructed. This noise

introduces variability into the estimation of eigenvalues and

eigenvectors of both degenerate and nondegenerate tensors

[12,13]. A DT is degenerate if at least two of its

eigenvalues are equal. The three types of degenerate tensors

are isotropic (k1=k2=k3N0), oblate (k1=k2Nk3N0), or
aging 24 (2006) 569–582
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prolate (k1Nk2=k3N0), where ki(i=1,2,3) are the three

eigenvalues of the tensor. A DT is thus nondegenerate when

all three of its eigenvalues are distinct (i.e., k1Nk2Nk3).
While some DTs are, in truth, degenerate, estimated tensors

are always nondegenerate because of the influence of noise

(e.g., bias introduced by sorting estimated eigenvalues by

magnitude); thus, DTs, whose eigenvalues cannot in reality

be discriminated, can be misclassified as nondegenerate

[12], yielding erroneous estimates of PDs of diffusion.

Fiber tracking based on these erroneous estimates of PDs

will, in turn, produce fiber pathways that are incorrectly

reconstructed, e.g., pathways that do not exist in the brain.

Therefore, accounting for the influence of noise and

reducing the likelihood of incorrectly estimating the

PDs of diffusion is of utmost importance in improving

the reliability and validity of fiber tracking using DT

images [13–18].

Because invariant measures of anisotropy are relatively

robust in the presence of noise, these measures have been

used extensively to classify tensor morphologies in DT

images [15,16,19–21]. For instance, invariant measures of

fractional anisotropy (FA) [19], linear shape (CL) and

planar shape (CP) [22] have been used to determine the

degree to which a tensor’s shape is classified as isotropic,

oblate or prolate, respectively. In practice, invariant

measures of a tensor are often compared against a fixed

value, or threshold, to determine whether the tensor is

degenerate [10,23]. However, identifying an appropriate

threshold is crucially important for enhancing the

likelihood that a tensor morphology will be correctly

classified. A threshold that is too low will increase the

probability of misclassifying as bnondegenerateQ a DT

that is actually bdegenerateQ (Type I error); a threshold

that is too high will increase the probability of misclas-

sifying as degenerate a DT that is actually nondegenerate

(Type II error). The thresholds that are applied to these

invariant measures, however, are usually selected arbi-

trarily [16].

To classify tensor morphologies, we test sequentially at

each voxel of the image three hypotheses that together

determine whether tensors are isotropic, oblate or prolate.

We use invariant measures as test statistics for each of

these three hypotheses. Moreover, we select appropriate

thresholds of invariant measures by analytically deriving

the limiting distribution of the invariant measure under the

null hypothesis, which, in turn, allows us to estimate the

probability of making a Type I error in the testing of each

hypothesis. Finally, we use P values of the test statistics to

improve our classification of tensor morphologies in

voxels where the presence of noise obscures discrimination

of differences among eigenvalues. Computer simulations

confirm that our classification scheme appropriately con-

trols the rates of Type I errors in classifying the

morphologies of DTs. Human studies show that P values

of the test statistics increase the sensitivity and accuracy of

tensor classification.
2. Theory

2.1. A statistical model for tensor estimation

A DT data set consists of n DW images acquired for each

subject. A conventional DTI pulse sequence provides m

baseline images (i.e., images having zero diffusion weight-

ing) and n�m DW images at each b value. Each image

contains N voxels, and thus n DW measurements are made

at each of these N voxels. We use the expression {(Si,ri,bi):

i=1,: : :,n} to denote the entire set of observations at each

voxel, where Si represents the nuclear magnetic resonance

(NMR) signal at a voxel, ri=(ri,1,ri,2,ri,3)
T represents the

direction of the applied diffusion gradient, the superscript T

denotes the transpose and bi is the b factor for each DW

image [24,25].

Thermal noise in the magnitude of an NMR signal

conforms to a Rician distribution [26,27]. In the presence

of minimal thermal noise, this Rician distribution is well

approximated by a Gaussian distribution [24]. Henceforth,

we will focus on a statistical model for nDW measure-

ments at a given voxel that assumes the Gaussian

distribution of noise:

logSi ¼ logS0 � bir
T
i Dri þ ei for i ¼ 1;: : :; n; ð1Þ

where ei is a random noise component that has a mean of

zero and a standard deviation of ri, S0 is signal intensity

in the absence of any DW gradient and the DT D=(Dk,j) is

a 3�3 positive definite matrix such that Dj,k=Dk,j holds

for all j,k=1,2,3. In the field of statistics, Eq. (1) is termed

a linear heteroskedastic model [28,29]. Let ĥ=(logŜ0,h
T)T

be an estimate of h=(logS0,b
T)T, where we define b=

(D11,D12,D13,D22,D23,D33)
T.

2.2. Invariant measures of degenerate tensors

Numerous invariant scalar indices of DTs have been

proposed as summary measures of the intrinsic structural

features of fiber tracts at each voxel of the human brain. All

of them are functions of the three eigenvalues of a DT.

Three principal invariants, {I1(b), I2(b) and I3(b)}, are

related to the following characteristic equation [19,20]:

jD� kI3�3j ¼ k � k1ð Þ k � k2ð Þ k � k3ð Þ

¼ k3 � I1 bð Þk2 þ kI2 bð Þ � I3 bð Þ ¼ 0; ð2Þ

where |D�kI3�3| denotes the determinant of D�kI3�3 and

I3�3 is a 3�3 identity matrix. The three principal invariants

[19,30] are defined as follows:

I1 bð Þ ¼ D11 þ D22 þ D33 ¼ k1 þ k2 þ k3;
I2 bð Þ ¼ D11D22 þ D11D33 þ D22D33 � D2

12 þ D2
13 þ D2

23

� �
¼ k1k2 þ k1k3 þ k3k2;

I3 bð Þ ¼ D11D22D33 þ 2D12D13D23

�
�
D33D

2
12 þ D22D

2
13 þ D11D

2
23Þ ¼ k1k2k3: ð3Þ

Another commonly used invariant of D is I4(b)= I1
2(b)�

2I2(b) [20].
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FA and relative anisotropy (RA) normalized in (0, 1) are

two of the most commonly used invariant measures [31]. FA

and RA are, respectively, defined as

FA bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� I2 bð ÞI4 bð Þ�1

q
; and

RA bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3I2 bð ÞI1 bð Þ�2

q
: ð4Þ

Isotropic tensor at each voxel is represented by FA(b)=
RA(b)=0, and maximum anisotropy, by FA(b)=RA(b)=1.
Other invariant measures of DTs include measures of

CL and CP [8,20,22,32]. The measures for CL and CP are

defined as

CL bð Þ ¼ k1 � k2ð Þ=I1 bð Þ ¼ 2RA bð Þ sin p=3� /ð Þ
sin p=3ð Þ ; and

CP bð Þ ¼ 2 k2 � k3ð Þ=I1 bð Þ ¼ 2RA bð Þ sin /ð Þ
sin p=3ð Þ ; ð5Þ

where /a[0,p/3] is defined in Eq. (15) in the Appendix. A

CL(b) value approaching 1 indicates that a tensor is

nonoblate (i.e., the difference between k1 and k2 is large,

indicating that the DT is highly elongated, or blinearQ),
whereas a CL(b) value near zero, together with a large value
of CP(b), indicates that the DT is nearly oblate. A DT with

a small CP(b) value (i.e., the difference between k2 and k3
is small) and a large CL(b) is prolate.

2.3. Test procedure for classifying tensor morphology

We propose a three-step procedure that tests sequentially

each of three hypotheses for the presence of a degenerate

tensor at a given significance level (i.e., the significance
Fig. 1. Path diagram for the classific
level of a test is the probability of rejecting the null

hypothesis when the null hypothesis is true) in each voxel of

the imaging volume:
ation
Hypothesis 1 (to classify isotropic DTs). At the sig-

nificance level a1, we use a statistic to test the

following hypotheses:

H
1ð Þ

0 : k1 ¼ k3 vs: H
1ð Þ

1 : k1pk3: ð6Þ

Hypothesis 2 (to classify oblate DTs). At the sig-

nificance level a2, we use a second statistic to test the

following hypotheses:

H
2ð Þ

0 : k1 ¼ k2 vs: H
2ð Þ

1 : k1pk2: ð7Þ

Hypothesis 3 (to classify prolate DTs). At the signifi-

cance level a3, we use a third statistic to test the

following hypotheses:

H
3ð Þ

0 : k2 ¼ k3 vs: H
3ð Þ

1 : k2pk3: ð8Þ
To classify DT morphologies, we need to combine

information from all three hypotheses (a flow chart for

sequential testing of the three hypotheses is found in

Fig. 1). If unable to reject H0
(1), we conclude that evidence

for the presence of anisotropy in this DT is lacking and

classify this DT as isotropic. If, on the other hand, the null

hypothesis H0
(1) is rejected (i.e., the presence of anisotropy

is supported), we then test the second and third hypothe-

ses. In that instance, if the null hypothesis H0
(2) is not

rejected and the null hypotheses H0
(1) and H0

(3) are rejected,

then we have insufficient evidence that this DT is not

oblate, and thus, we classify it as oblate. If, in contrast, the
of tensor morphologies.
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null hypotheses H0
(1) and H0

(2) are rejected but the null

hypothesis H0
(3) is not rejected, the DT is classified as

prolate in shape. If all H0
(i) (i=1,2,3) are rejected, then the

DT is classified as nondegenerate (i.e., a PD for the DT

can be assigned).

We propose the use of certain invariant measures as test

statistics for each of these three hypotheses. Note that in

isotropic tensor, it follows from Eq. (4) that FA(b)=0 is

equivalent to claiming that I2(b)= I4(b). To test statistically

for the presence of isotropy in a voxel, we can formulate the

null hypothesis and its alternative as

H
1ð Þ

0 : I2 bð Þ ¼ I4 bð Þ vs: H 1ð Þ
1 : I2 bð ÞpI4 bð Þ: ð9Þ

Because FA(b)2=[I4(b)�I2(b)]/I4(b), Ta(ĥ)=FA(ĥ)
2 is used

as the test statistic for the isotropy hypotheses.

When testing the hypotheses pertaining to oblate and

prolate DTs, we consider two additional invariant mea-

sures [20]:

V bð Þ ¼ I1 bð Þ=3½ 	2 � I2 bð Þ=3 and

S bð Þ ¼ I1 bð Þ=3½ 	3 � I1 bð ÞI2 bð Þ=6þ I3 bð Þ=2: ð10Þ

These two invariant measures are related to the explicit

expression of three eigenvalue–eigenvector pairs [20]. In the

Appendix, we show that S bð Þ þ V bð Þ
ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
¼ 0 is

mathematically equivalent to k1=k2. Similarly, S bð Þ �
V ðbÞ

ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
¼ 0 is equivalent to k2=k3. Thus, we can

rewrite Eqs. (7) and (8) that test for the presence of oblate

and prolate tensors (i.e., using Hypotheses 2 and 3) as:

H
2ð Þ

0 : S bð Þ þ V bð Þ
ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
¼ 0 vs: H

2ð Þ
1 : S bð Þ þ V bð Þ

ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
p0;

H
3ð Þ

0 : S bð Þ � V bð Þ
ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
¼ 0 vs: H

3ð Þ
1 : S bð Þ � V bð Þ

ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
p0:

ð11Þ

For the statistic that tests H0
(2) against H1

(2), we propose

Tb b̂b
� �

¼ S b̂b
� �

þ V b̂b
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

V b̂b
� �r

: ð12Þ

Similarly, we propose Tcðb̂bÞ ¼ V ðb̂bÞ
ffiffiffiffiffiffiffiffiffiffiffi
V ðb̂bÞ

q
� Sðb̂bÞ as the

statistic for testing H0
(3) against H1

(3).

Also, in the Appendix, we derive the asymptotic

distributions of Ta(ĥ), Tb(ĥ), and Tc(ĥ) under the null

hypotheses as the total number of acquisitions (n) goes to

infinity. We then propose a scaled v2 approximation for

calculating the P value for each hypothesis (i.e., the

probability of having a test statistic more extreme than the

one obtained under the assumption of the null hypothesis)

for moderate and large n (e.g., nz25). Computational

demands for calculating the three proposed test statistics and

their corresponding P values are minimal because recon-

struction of tensor fields always includes computation of

FA2 and other invariant measures, as well as the three

eigenvalue–eigenvector pairs, that are used to calculate the

test statistics.
3. Materials and methods

3.1. Simulations

3.1.1. Type I and II error rates of the test statistics

We assessed the performance of Ta(ĥ), Tb(ĥ) and Tc(ĥ) as
test statistics for the three hypotheses pertaining to the

isotropic, oblate and prolate classifications of tensor

morphology, respectively [Eqs. (6), (7), (8)], and we

evaluated rates of Type I and Type II errors associated with

each of these test statistics. We set k1=qk2 and k2=k3 to

evaluate Ta(ĥ). We used k1=qk2=2qk3 to evaluate Tb(ĥ),
and we set k1=1.5k2 and k2=qk3 to evaluate Tc(ĥ). Because
the three hypotheses were constructed to test for DTs having

differing shapes, DTs of differing shape were used as the

basis for evaluating the performance of each of the proposed

test statistics. We only considered a diagonal DT D and

simulated the DW images for each such tensor. Three

differing degrees of anisotropy, having ratios q=1, q=1.5
and q=3 were studied. The mean diffusivity E� =(k1+k2+k3)/
3 was set equal to 0.7�10�3 mm2/s, a value typical for

normal cerebral tissue [12]. NMR signals were generated

using S0 exp(�biri
TDri). Complex Gaussian noise with a

standard deviation r0 was then added to the real channel

signal, and the resulting DW magnitude images were

calculated. The distribution of noise in these DW images

was Rician. We fixed S0 at 1500 but varied r0 to provide a

range of differing signal-to-noise ratios (SNR=S0/r0) of 10,

15, 20 and 25 in these DW images, respectively. The DTI

acquisition consisted of m=5 baseline images with b=

0 s/mm2 and n�m=25 directions of diffusion gradients

arranged uniformly in 3-dimensional space at b =

1000 s/mm2 [33]. For each simulation, two significance

levels (as of 5% and 1%) were considered, and 10,000

replications were used to estimate significance levels. A

procedure described in the Appendix was used to estimate

the DTs and to calculate the P value for testing each of the

three hypotheses. We also computed FA, CL(ĥ) and CP(ĥ)
for each simulated data set.

We further evaluated CL(ĥ) and CP(ĥ) under the null

hypotheses. We investigated the empirical behavior of

CL(ĥ) as a function of SNR when k1=k2=0.84 and

k3=0.42, when the true value of CL(h) was zero. Similarly,

we considered CP(ĥ) as a function of SNR when k1=0.9

and k2=k3=0.6, when the true value of CP(h) was 0. We

generated 10,000 simulated data sets to estimate the mean

and standard deviation of CL(ĥ) and CP(ĥ) at 20 different

values of SNR varying from 5 to 40.

3.1.2. Evaluating the test statistics assuming the presence of

fiber crossings

We further examined the performance of the three test

statistics when modeling the presence of multiple fibers in a

single voxel (as will occur when multiple fibers cross within

the brain) [34–37], a situation in which the single DT model

for Eq. (1) can fail. For our simulated data, we generated
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NMR signals for a voxel having two different fibers

components:

S0t f exp � bir
T
i D1ri

� �
þ 1� fð Þexp � bir

T
i D2ri

� �
b; ð13Þ

where fa[0,1] and 1�f are the signal fractions of the DTs

D1 and D2. We added complex Gaussian noise of standard

deviation r0 to the real channel signal. We set S0=1500 and

varied r0 to obtain the NMR magnitude images with

differing SNRs of 10, 15, 20 and 25, respectively. We

placed, within a single voxel, a DT, D1, representing WM in

which [k1,k2,k3]=[1.4,0.35,0.35] and a second tensor, D2,

representing the presence of either WM [1.4,0.35,0.35] or

gray matter (GM) [0.7,0.7,0.7] (units: 10�3 mm2/s). Thus,

two combinations of D1 and D2 were studied: (1) WM+WM

or (2) WM+GM. For the case of WM+WM, the angle

between the PDs of D1 and D2 was set to 908. Two differing

values for f, f=0.5 and f=0.25 were studied. Ten thousand

replications were used to estimate the rejection rates of

the three test statistics for each tissue combination at the

significance level of 5%.

We further demonstrated that multiple fibers present

within a single voxel can lead to degenerate tensors when

we used a model for a single DT [Eq. (1)]. Note that the

estimated tensor D cannot recover the two tensor compo-

nents within the NMR signal of this voxel. However, for a

relatively small b value, the estimated D approximated a

pseudo DT, Dpseudo= f D1+(1�f )D2, which is the weighted

sum of the two DTs, D1 and D2 [38]. When f=0.5, neither

D1 nor D2 dominated signal within the voxel, whereas a D1

should have dominated the two-DT model at f=0.25. In the

case of WM+WM, the three eigenvalues of Dpseudo were

given by k1,p=1.4(1�f)+0.35f, k2,p=0.35(1�f )+1.4f and

k3,p=0.35f+0.35(1�f), respectively. At f=0.5, k1,p=0.875,

k2,p=0.875 and k3,p=0.35; however, the three eigenvalues

of Dpseudo were given by 1.1375, 0.6125 and 0.35,

respectively, at f=0.25. Similarly, for the case of WM+GM,

the three eigenvalues of Dpseudo were 1.05, 0.525 and 0.525

at f=0.5 (or 0.875, 0.6125 and 0.6125 at f=0.25). Based on

the above analysis, we expected that the null hypotheses

H0
(1) (k1=k3) and H0

(3) (k2=k3) would be rejected for the

WM+WM case at f=0.5 and that all three null hypotheses

would be rejected for the WM+WM case at f=0.25. For the

WM+GM case, we expected to classify the DT as prolate

in morphology.

3.1.3. In vivo human data

We acquired DT images of the brains of seven healthy

adult subjects (four men and three women; right-handed;

mean age 28F4.2 years). Informed consent was obtain-

ed from all participants according to guidelines set forth

by the institutional review boards at Columbia University

and New York State Psychiatric Institute. Images were

acquired on a GE 3.0-Tesla whole body MRI scanner

(Milwaukee, WI, USA). The data matrix of 128�128 was

zero-padded to 256�256. Other imaging parameters were
TE/TR=73.5/6925 ms, FOV=24 cm, 3.0-mm slice thick-

ness with no gap, 34 contiguous slices parallel to the

anterior and posterior commissure (AC–PC) line and

NEX=3. The DTI acquisition scheme was the same as

that detailed for the simulation studies above. Phase

correction and Array Spatial Sensitivity Encoding Tech-

nique (factor=2) were applied.

For each subject, nonbrain tissue was deleted from the

DT images using BET in MRIcro [39]. A linear model for

Eq. (1) was used to construct the DTs and three eigenvalue–

eigenvector pairs, and the invariant measures, including FA,

CL(h) and CP(h),were calculated. For every subject, we

used the procedure described in the Appendix to compute at

each voxel the test statistic and its associated P value for

each of the three hypotheses to classify tensor morphology

at each voxel, as well as the prevalence and distribution of

degenerate tensors across the imaging volume. Using these

test statistics, we (a) assessed the relative performances of

tensor classification using the conventionally thresholded

maps of invariant measures and maps of �log10(P) for

these measures created within our statistical framework; (b)

classified isotropic DTs using both maps of FA and

�log10(P) maps of Ta(h); (c) classified oblate DTs using

maps of CL(h) and �log10(P) maps for Tb(h); (d) noted the

general anatomical localizations of the various classes of DT

morphology within the human brain; (e) determined the

prevalence of the various classes of tensor morphology

within the human brain.

4. Results

4.1. Simulations

4.1.1. Type I and II error rates of the test statistics using

simulated data

Table 1 presents estimates for the rejection rates of the

statistics Ta(ĥ), Tb(ĥ) and Tc(ĥ) in our simulated DTI data

set at two significance levels (as of 5% or 1%). We observe

that in isotropic tissues, the rejection rates of Ta(ĥ) are

reasonably close to the respective significance levels for this

small sample of 30 DW measurements. Overall, the

rejection rates in all cases were accurate, and Type I (false

positive) errors were not excessive (Table 1). Consistent

with our expectations, statistical power for detecting

nondegenerate tensors increased with the eigenvalue ratio

q (the bpower Q of a test statistic is the probability that the

test will reject a false null hypothesis or that it will not make

a Type II error; thus, the higher the power, the greater the

chance of obtaining a statistically significant result).

Furthermore, an increasing SNR reduced the Type II (false

negative) error rate and improved the power of the test

statistic Ta(ĥ) to detect differences between k1 and k3. The
rates of Type II errors for the statistic Ta(ĥ) were low for

SNRs near 10. Similar results were obtained for simulations

using Tb(ĥ) and Tc(ĥ), except that rejection rates at the 0.01

and 0.05 levels for Tc(ĥ) were slightly higher than the

corresponding significance levels when q=1. We conclude,



Table 1

Comparison of the rejection rates for the test statistics Ta(ĥ ), Tb(ĥ ), Tc(ĥ ) and the invariant measures FA, CL(ĥ ) and CP(ĥ ) under the single-DT model

SNR Ta(ĥ ) and FA; DT: k1=qk2=qk3

DT:q =1 DT:q =1.5 DT:q =3

a =1% a =5% FAN0.2 a =1% a =5% FAN0.2 a =1% a =5% FAN0.2

10 0.017 0.072 0.677 0.163 0.337 0.913 0.946 0.987 1.000

15 0.016 0.068 0.202 0.408 0.624 0.890 1.000 0.999 1.000

20 0.015 0.060 0.028 0.736 0.893 0.889 1.000 1.000 1.000

25 0.014 0.055 0.002 0.928 0.999 0.916 1.000 1.000 1.000

Tb(ĥ ) and CL; DT: k1=qk2=2qk3

DT:q =1 DT:q =1.5 DT:q =3.09

a =1% a =5% CLN0.2 a =1% a =5% CLN0.2 a =1% a =5% CLN0.2

10 0.020 0.069 0.189 0.217 0.403 0.671 0.998 0.999 0.999

15 0.015 0.048 0.025 0.509 0.723 0.682 1.000 1.000 1.000

20 0.013 0.046 0.002 0.807 0.927 0.694 1.000 1.000 1.000

25 0.009 0.045 0.000 0.962 0.995 0.714 1.000 1.000 1.000

Tc(ĥ ) and CP; DT: k1=1.5k2, k2=qk3

DT:q =1 DT:q =1.5 DT:q =2.98

a =1% a =5% CPN0.2 a =1% a =5% CPN0.2 a =1% a =5% CPN0.2

10 0.015 0.050 0.311 0.098 0.224 0.651 0.594 0.810 0.984

15 0.019 0.058 0.092 0.276 0.473 0.601 0.951 0.990 0.999

20 0.018 0.059 0.018 0.524 0.739 0.622 1.000 1.000 1.000

25 0.017 0.061 0.002 0.744 0.890 0.617 1.000 1.000 1.000

Four differing SNRs (10, 15, 20, and 25) and 10,000 simulated data sets were used for each case.
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based on the Type I and II errors of the three statistics in

these simulations, that the three proposed test statistics can

be used to identify tensor morphologies and that they have

satisfactory statistical properties under the most commonly

used statistical model for estimating DTs [Eq. (1)].

In Table 1, we also presented the rejection rates of

comparing the invariant measures FA, CL(ĥ) and CP(ĥ)
against the conventional threshold of 0.20 for these

measures in detecting degenerate tensors. We observed

that Type I errors for all three invariant measures were

exceedingly high when the SNR was 10; when using FA as

the classifier for degeneracy, for instance, the Type I error

rates were as high as 0.667, even though its Type II error

rates were low. Although increasing the threshold for FA

decreased the rate of Type I errors, it was at the expense of

increasing Type II errors. When using FA as the invariant

measure for detecting degenerate tensors, we therefore must

derive the distribution of FA in order to control the rate of

Type II errors for any given Type I error rate. Moreover, as

SNR increased from 10 to 25, the Type II error rate for

CL(ĥ) decreased slowly from 0.329 (=1�0.671) to 0.286

(=1�0.714), while the Type II error rate for Tb(ĥ)
decreased quickly from 0.597 (=1�0.403) to 0.005

(=1�0.995). We attributed this slow decline in Type II

error rates for CL(ĥ) with increasing SNR to the fact that

the true CL(b)=0.1667 happened to be close to the fixed

arbitrary threshold of 0.20. In fact, if the true value of CL(b)
even more closely approximated the fixed threshold 0.20,

then the Type II error rate for CL(ĥ) was as high as 0.50
even for large SNRs, because CL(h) was a statistically

unbiased estimate of CL(b) for nonoblate DTs, and the

probability of CL(ĥ) being greater than CL(b) was 0.50. For
CP(ĥ) at q=1.5, we observed that the Type II error rate for

CP(ĥ) actually increased from 0.349 (=1�0.651) to 0.383

(=1�0.617) with increasing SNRs (Table 1). This example

demonstrated that using a fixed threshold for invariant

measures is inappropriate for the valid classification of

tensor morphologies across different SNRs.

We calculated the means and standard deviations of

CL(ĥ) and CP(ĥ) under the null hypotheses for detection of

oblate and prolate DTs. Ideally, CL(b) and CP(b) should

equal zero and, yet, the mean values of both CL(h); and
CP(ĥ) were greater than zero, and their standard deviations

were relatively large (Fig. 2). As expected, the means and

standard deviations of CL(ĥ) [and CP(ĥ)] decreased with

increasing SNRs.

4.1.2. Evaluating the test statistics assuming the presence of

fiber crossings

Table 2 presents the estimated rejection rates of the

statistics Ta(ĥ), Tb(ĥ) and Tc(ĥ) at the significance level .05
under the two-DT model. We conclude that the pseudo DT

had an oblate shape for voxels containing two DTs

representing WM+WM at an f=0.5 because the rejection

rates of Ta(ĥ) and Tc(ĥ) were high, while those of Tb(ĥ)
were close to the significance level of 5%. However, for the

voxels containing two DTs representing WM+WM at f=.25,

the pseudo DTwas nondegenerate. In voxels containing two



Table 2

Comparison of the rejection rates for the test statistics Ta(ĥ ), Tb(ĥ ) and
Tc(h) under the two-DT model at the significance level .05

SNR f =0.5 f =0.25

Ta(ĥ ) Tb(ĥ ) Tc(ĥ ) Ta(ĥ ) Tb(ĥ ) Tc(ĥ )

D2:[k1,k2,k3]=[1.4,0.35,0.35]

10 0.659 0.063 0.587 0.926 0.738 0.1667

15 0.962 0.043 0.953 0.999 0.972 0.365

20 0.999 0.035 0.999 1.000 0.999 0.619

25 1.000 0.027 1.000 1.000 1.000 0.832

D2:[k1,k2,k3]=[0.7,0.7,0.7]

10 0.729 0.682 0.047 0.227 0.203 0.045

15 0.977 0.969 0.046 0.466 0.410 0.057

20 0.999 0.999 0.055 0.728 0.674 0.068

25 1.000 1.000 0.050 0.911 0.869 0.069

The first DT component is D1:[k1,k2,k3]= [1.4,0.35,0.35] and the second

component is presented in the table. Four differing SNRs {10, 15, 20, 25}

and 10,000 simulated data sets were used.

Fig. 2. Results from a simulation study of evaluating CL(ĥ ) and CP(ĥ ) under the null hypotheses. Panels (A) and (B) show the mean value and the standard

deviation of CL(ĥ ) and CP(ĥ ) as a function of SNR based on 10,000 simulated data sets. (A) Twenty differing SNRs, from 5 to 40, were evaluated. The DT

was specified as k1=k1=0.84 and k3=0.42, and the true value of CL(h) equaled zero. (B) The DTwas specified as k1=0.9 and k3=k2=0.6, and the true value

of CP(h) equaled zero.
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DTs representing WM+GM, the rejection rates of the three

statistics suggest that the pseudo DTwas prolate in shape for

both f=0.25 and f=0.5. Thus, these results indicated that

multiple fibers present within a single voxel can lead to

misclassification of tensor morphologies.

4.1.3. In vivo human data

4.1.3.1. Assessing performance of tensor classification

using maps of invariant measures and maps of �log10( P)

values of statistics for testing three hypotheses. Using a

single representative subject, we presented maps of invariant

measures (Fig. 3A–C) and �log10(P) maps (Fig. 3D–F) for

testing hypotheses in axial images positioned through the

dorsum of the body of the caudate nucleus. The map of FA

values (Fig. 3A) showed that significantly anisotropic voxels

(those with relatively large FA values) were located almost

exclusively within the WM. We observed a similar scenario

in maps of CL(ĥ) (Fig. 3B) and maps of CP(ĥ) (Fig. 3C). All
�log10(P) maps represented images of the �log10(P) value

for Ti(ĥ) (i=a,b,c). By convention, a voxel having a P value

b .05, corresponding to a �log10(P) value N1.31 was

regarded as significant. All �log10(P) values b5 were set

equal to 5 in order to improve the distribution of plotted

P values. A DT having a value of �log10(P) for Ta(h) of
5 (i.e., P=10�5) was highly anisotropic. The brightest voxels

in the invariant measure maps (Fig. 3A–C) typically

corresponded to the brightest voxels in the �log10(P) maps

(Fig. 3D–F). The maps of Ti(ĥ) (i =a,b,c), however,

identified more voxels as anisotropic, nonoblate and non-

prolate than did the maps of invariant measures.
4.1.3.2. Classifying isotropic DTs using maps of FA and

maps of �log10( P) values for Ta(b). The �log10(P) value

for Ta(ĥ) seemed to be more sensitive and specific in

classifying the morphologies of DTs as anisotropic or

isotropic than were FA values alone. The �log10(P) map

for Ta(ĥ) (Fig. 4C), for example, identified fibers within the

narrow bbridgeQ of tissue within the septum pellucidum that

the simple FA map did not identify (Fig. 4D). In addition,

our procedure for the detection of degenerate tensors

classified as isotropic the voxels containing cerebrospinal

fluid (CSF) that surround the septum (Fig. 4B and C),

whereas the conventional mapping of FA at those voxels



Fig. 3. Maps of the invariant measures and �log10( P) values associated with test statistics in a single subject. Shown here is an axial slice through the dorsal

aspect of the body of the caudate nucleus and the body of the corpus callosum. (A) FA values depicting the degree anisotropy in each voxel. (B) CL(ĥ ) values
depicting the degree of nonoblate morphology in each voxel. (C) CP(ĥ ) values representing the degree of nonprolate shape in each voxel; the color bar denotes
differences between brain regions in the value of invariant measures. The scale of the color coding ranges from 0 to 1, with black representing the lowest value

(0) and white representing the highest value (1). (D) The �log10( P) values of test statistic: Ta(ĥ ). (E) The �log10( P) values of test statistic: Tb(h). (F) The
�log10( P) values of test statistic: Tc(ĥ ).The color scale reflects the size of the values of �log10( P), with black to blue representing smaller values (0–1), and

red to white representing higher values (1.88–5). (G) The corresponding slice of the T1-weighted anatomical image. CC=corpus callosum; LF=longitudinal

fasciculi; CA=cortical association fibers.
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indicated that their average FA value was 0.120 (S.D.=

0.06), close to the FA value in the septum pellucidum.

Thus, the FA map was unable to discriminate CSF from

cerebral tissue in this region. Furthermore, values of

�log10(P) for the Ta(ĥ) test statistic in voxels within the

caudate nuclei were relatively large (mean=1.93, S.D.=

1.32), indicating the presence of considerable anisotropy,

whereas FA values here were relatively small (mean=0.15,

S.D.=0.04), incorrectly indicating isotropy when invoking

conventional FA thresholds (Fig. 4C and D). Thus, based

on these preliminary in vivo data, we conclude that the

�log10(P) map for Ta(ĥ) identified some voxels that

had small FA values as being isotropic, and it correctly

identified some voxels that had similarly small FA values as

being anisotropic.
Table 3 presents the number of voxels in a region of

interest (ROI) from a representative subject in which the

morphologies of DTs were classified using either the

conventionally thresholded FA value (0.20) or the P value

for Ta(ĥ) (either .05 or .01). We observed that comparing

FA values with a universal threshold would yield a high

rate of false-negative errors in classification. At the

threshold of Pb.01, for example, 133 of all voxels that

had FA values b .20 were still labeled as anisotropic. In

contrast, if the 621 voxels with FA b0.20 were truly

isotropic, then about seven voxels would have been labeled

as isotropic using a threshold for the P value for Ta(ĥ) of
b .01. We therefore expected a false-negative rate of

approximately 20.42% (=133/621�0.01=621.42%�1%)

in the ROI.



Fig. 4. A comparison of the information provided by the map of FA values and the corresponding map of �log10( P) values for Ta(ĥ ). Shown here are maps

from a single subject in an axial slice at the level of the fornix, genu of the internal capsule, and head of the caudate nucleus. (A) An FA map with the ROI

highlighted in green. (B) The corresponding anatomical T1-weighted image of this slice, with a rectangular box indicating the portion of the image magnified in

panels (C) through (F). (C) The map of �log10( P) values for Ta(ĥ ) in the ROI. The color scale reflects the magnitudes of values of �log10( P), with black to

blue representing smaller values (0–1) and red to white representing larger values (1.88–5). (D) The FA map within the ROI. The green circle identifies a voxel

on a narrow bridge of tissue in the septum pellucidum that appears as anisotropic in the �log10( P) map (C) but does not appear anisotropic in this FA map.

(E and F) The FA maps within the ROI masked by FA thresholds of 0.10 and 0.20, respectively. The color bar denotes the values of FA, with black to blue

representing smaller values (0–0.20) and red to white representing larger values (0.4–1). Voxels in the head of the caudate nucleus are incorrectly classified as

having degrees of anisotropy similar to CSF using each FA threshold, whereas the �log10( P) map discriminates these two types of tissue successfully in (C).

able 3

omparison of invariant measures and test statistics: the number of voxels

the ROI of a representative subject classified into different tensor

orphologies

P b.01 P N.01 Total P b.05 P b.05 Total

a(b̂ )
AN0.20 47 16 63 54 9 63

Ab0.20 133 488 621 214 407 621

otal 180 504 684 268 416 684

b(b̂ )
LN0.05 101 229 330 157 173 330

Lb0.05 4 350 354 13 341 354

otal 105 579 684 170 514 684
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4.1.3.3. Classifying oblate DTs using maps of CL(b̂) and

maps of �log10( P) values for Tb(b̂). The map of �log10(P)

values for Tb(ĥ) revealed that some tensors having a small

CL(ĥ) value actually did have small differences between k1
and k2, whereas other tensors with a small CL(ĥ) value had
statistically large differences between k1 and k2 and, thus,

were misclassified as oblate when using conventional

measures of morphology outside of proper statistical

framework. Whereas the mean CL(ĥ) value in the portion

of an ROI containing primarily CSF was 0.05 (S.D.=0.03),

values of �log10(P) for Tb(ĥ) were small in those same

voxels (Fig. 5B). Furthermore, values of �log10(P) for

Tb(ĥ) were relatively large in voxels within the caudate

nuclei, indicating the presence of DTs having nonoblate

shapes; the CL(ĥ) values for DTs in these voxels, however,

were relatively small (mean=0.056, S.D.=0.028) and

incorrectly suggested the presence of DTs having oblate

shapes (Fig. 5C–E). Indeed, at a rejection rate of 0.05,

122 voxels within the caudate nuclei were misclassified

using CL(ĥ) as being nonoblate (Fig. 5B).

Using a universal threshold for CL(ĥ) values can also

generate many false-positive errors in the classification of

DTs as having a CL. We assessed the use of invoking three

arbitrary thresholds for CL(ĥ): 0.05, 0.10 and 0.15

(Fig. 5C–E). These thresholds classified tensors as oblate,

respectively, within 96.2%, 91.5% and 51.75% of voxels in

the ROI (Fig. 5C–E). In contrast, at P values of .05 or .01

for the Tb(ĥ) statistic testing for the presence of oblate DTs,

75.15% and 84.65% of the total number of voxels in the

ROI, respectively, were categorized as oblate (Table 3).
4.1.3.4. Anatomical localizations of the various classes of

DT morphology within the human brain. We determined the

anatomical location of the various classes of degenerate DTs

across the imaging volumes for our seven adult subjects

using P values for the sequential statistical testing of our

three hypotheses for DT morphologies (Fig. 6D–F).

Specifying significance levels of (a1,a2,a3)=(0.05,0.05,
0.05) when testing the three hypotheses, DTs classified as

isotropic were located primarily in CSF or GM. DTs

classified as oblate were positioned primarily along the

boundaries of regions containing isotropic tissue, such as

CSF or GM, or else as small islands within intensely

anisotropic tissues, such as WM. In each of these general

locations, both the directions and magnitudes of the DTs

change abruptly across voxels. The oblate DTs, therefore,
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Fig. 5. Maps of CL(ĥ) and the �log10( P) values for Tb(ĥ) in a single slice from a single subject. (A) The rectangular ROI of the T1-weighted anatomical

image. (B) The same rectangular ROI in the map plotting the value of �log10( P) for Tb(ĥ). (C–E) CL(ĥ) maps within the ROI masked with thresholds of 0.15,

0.10 and 0.05, respectively. Nearly all voxels in the head of the caudate nucleus and in the CSF are incorrectly classified.
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were most likely the products of partial volume averaging of

the morphologies of DTs in voxels that contained two or

more tissue types that differed in structural organization.

This interpretation is supported by maps superimposing the

location of oblate DTs on a conventional, 3-color map of the

PDs of DTs (Fig. 6G–I); oblate DTs were positioned
Fig. 6. Maps of tissue types and the weighted PD in three slices from a single sub

axial slices. (A–C) The T1 weighted anatomical images. (D–F) Maps of tissue

blue= isotropic DTs. (G–I) Principal direction maps: yellow=overlay indicating D
primarily at locations of fiber crossing and along the

boundaries of differing tissue types. DTs classified as

prolate were located primarily within the intensely aniso-

tropic WM of the corpus callosum, longitudinal fasciculus

and association fibers directly beneath cortical GM, as well

as in certain GM structures, such as the thalamus and body
ject. Rows from top to bottom show slices from progressively more dorsal

types: white=nondegenerate DTs; red=oblate DTs; yellow=prolate DTs;

Ts having an oblate shape.



Table 4

The number and proportion of DTs classified into various morphologies in

seven adult subjects

Isotropic Oblate Prolate Nondegenerate Total

Number of Voxels

Mean 178630 62490 146020 131700 518830

S.D. 27253 9269 11934 11201 35838

Percentage

Mean (%) 34.29 12.04 28.13 25.54 100

S.D. (%) 3.50 1.55 0.86 3.11
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of the caudate nucleus. DTs classified as either anisotropic

or nondegenerate were positioned mainly within cortical and

subcortical WM.

4.1.3.5. The prevalences of various classes of tensor

morphology within the human brain. We assessed the

prevalence of the four morphological classes of DTs

(nondegenerate, oblate, prolate and isotropic) within the

brains of our seven adult subjects (Table 4). We found that

34.29% were isotropic, 12.1% were oblate, 28.1% were

prolate and 25.5% were nondegenerate. Most tractography

algorithms can track fibers across voxels containing either

anisotropic or prolate DTs; these classes of tensors, which

together accounted for 53.6% of the total number of voxels

in the brain (with more than half of these being prolate),

were located primarily within white and GM, as expected.

Attempting to track fibers through other (degenerate) tensor

types will necessarily lead to errors [23]. We identified a

prevalence of degenerate tensors that was 60-fold greater

than those detected using a previous method [18].
5. Discussion

Our procedure for detecting degenerate tensors differs

substantially from a previously proposed method [18] in that

our approach tests for the presence of specific morpholog-

ical features of DTs within a statistical framework that

accounts for the noise that is inherent in all DTI data. Unlike

the prior method, ours is applicable to the classification of

DTs within individual voxels, without relying on infor-

mation from DTs at neighboring voxels. It allows deter-

mination of the prevalence and spatial locations of

nondegenerate, isotropic, oblate and prolate DTs throughout

the brain. Moreover, using the P values associated with the

proposed test statistics maximizes the probability of

correctly classifying the shapes of DTs because these

P values account for the amount of noise within a given

voxel, the number of DW images, the acquisition scheme

and the model for noise in the data. Indeed, both our

simulated and in vivo human data support this claim.

The previously proposed method for detection of

degenerate tensors assumes that the tensor field is smooth

when it uses information from surrounding voxels to search

for degeneracy [18]. Although assuming the smoothness of

fiber tracts in general may be reasonable, our findings show
clearly that it is unjustified at the boundaries of tissues that

differ substantially in their degree of anisotropy or in the

orientation of their DTs (Fig. 6). Searching for degenerate

tensors in the entire imaging volume under the assumption

of smoothness of the tensor field may therefore lead to

misclassification of tensor morphologies, particularly near

the boundary between differing tissue types. That our

method identified a vastly larger number of degenerate

tensors than did the prior method and in, precisely, these

anatomical regions of discontinuity in DT orientation and

degree of anisotropy, further suggests that an assumption of

smoothness will lead to erroneous classification.

In order to use invariant measures of anisotropy as test

statistics, we needed to characterize their distributions. A

bootstrapping method [40,41] was recently used to approx-

imate the distributions of invariant measures in DT images

[16,42]. Bootstrapping [16,42], however, cannot be used to

calculate P value for testing hypothesis in DT images

because it cannot approximate the distribution of a test

statistic under the null hypothesis [43]. Moreover, boot-

strapping at each of the large number of voxels in the human

brain would likely prove computationally intensive and,

therefore, prohibitive. Instead, we derived analytically the

asymptotic null distributions of the test statistics (see

Appendix) and used these null distributions to test

sequentially three hypotheses that together classified the

morphologies of tensors at each voxel. This analytic

approach is also computationally satisfactory because

calculating a P value using a scaled v2 approximation is

much faster than is use of numerical simulations such as

bootstrapping. Our simulations demonstrated empirically

that the scaled v2 distribution provides good statistical

power for the detection of degenerate tensors, while

simultaneously limiting Type I (false positive) errors.

The P value for testing each of three sequential

hypotheses quantifies the degree of tensor degeneracy at

each voxel. For example, for the isotropic hypothesis, a

small P value in a voxel denotes a low probability of

obtaining a particular FA value in that voxel under the null

hypothesis (k1=k3). In practice, we can choose a fixed

significance level (such as .05 or .10) as a universal

threshold, with P values higher than that threshold being

classified as isotropic (or as oblate or prolate).

In practice, any procedure that directly compares FA

values (or CL(ĥ) or CP(ĥ) values) to a fixed, arbitrary

threshold without considering their stochastic behavior can

yield high false-positive and false-negative error rates for

the detection of degenerate tensors. The stochastic prop-

erties of FA values [or CL(ĥ) or CP(ĥ) values] are mainly

influenced by the DT at a particular voxel, the number of

DW images used in estimating the DT, and the SNR

characteristics of the DW images. Similar observations

have been reported previously for RA2 and other anisot-

ropy indices [12,15,44]. Based on our findings, we

conclude that the stochastic behavior of these invariant

measures must be adequately characterized before the
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invariant measures themselves can be used reliably to

classify tensor morphology.

Further research should determine whether combining

information from invariant measures of anisotropy, such as

CP(h), with the P values for the classification of tensor

morphologies, can improve the analyses of DT images,

including the performance of fiber tracking algorithms. For

example, our human studies have shown that oblate tensors

account for 12.1% of voxels located in regions containing

both GM and WM or crossing fibers (Fig. 6). Moreover, our

simulations have shown that a combination of two WM

tensors in a voxel can lead to classification of the pseudo

tensor in that voxel as oblate. Once our procedure has

identified a tensor as oblate, we can then further investigate

whether the tensor’s oblate shape is caused by a combina-

tion of WM and GM or by crossing fibers. If the tensor

contains multiple fibers, we can estimate the component

DTs and apply our classification procedure to each

component. The resulting information on the shape of each

tensor can then be used for fiber tracking itself or for further

development of fiber tracking algorithms that can function

better in areas where fibers cross.

Many related topics warrant further research. First,

because we used the asymptotic distributions of the

invariant measures to classify tensors, our results are limited

to data sets containing DW images that are moderate or

large in number (e.g., nz25). For a small number of DW

images (e.g., nV12), we can resort to parametric boot-

straping methods [43] for accurately approximating the

distributions of invariant measures, such as Ta(h), under our
null hypotheses. Bootstrapping at each voxel in the human

brain will nevertheless remain computationally intensive,

even with a smaller number of images. Second, we used the

least squares estimate for the statistical model in Eq. (1) to

reconstruct DTs. Tensor estimates may therefore be subject

to substantial biases under a low SNR, because Eq. (1) is not

a good approximation of NMR signals. Using a weighted

linear fit may improve slightly the accuracy of estimated

DTs for moderate and high SNRs. Moreover, because our

method is limited to a single-tensor model for Eq. (1), other

possible causes of degenerate tensors, such as the presence

of multiple tensors within a voxel, should be investigated

further [36–38]. Also, because structural artifacts in DW

images, including brain pulsation and involuntary move-

ment of the subject, can generate unusual behavior of the

data that diverge substantially from that in a normal or

Rician model, post-processing techniques such as correction

of eddy current distortions must be used before applying the

test procedures proposed here. Moreover, the findings based

on the ROI located between ventricles could be affected by

the effects of cardiac-related pulsations. Finally, although

we focused here on use of invariant measures as test

statistics for the classification of tensor morphology, other

statistics, such as those based on eigenvalues, may prove

helpful in further characterizing tensor morphologies and in

identifying the presence of degenerate tensors.
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Appendix

We derive the asymptotic null distributions of Ta(h),
Tb(h) and Tc(h) in the Appendix. We first review several

standard results for the model (1) [28,29,45]. We then

present the key ideas of deriving the asymptotic null

distributions of Ta(h), Tb(h) and Tc(h). We also propose a

simple method of approximating P values of the three test

statistics. Finally, we include a detailed procedure for

computing the P values of the three test statistics.

For the statistical model shown in Eq. (1), we can

calculate a least square estimate of h, denoted by

ĥh ¼ logŜS0; b̂b
T

� �T
¼

Pn
i¼1

ziz
T
i


 ��1Pn
i¼1

zilogSi, where zi =

(1,�b ir i ,1
2,�2bi r i ,1r i ,2,�2bir i ,1r i ,3,�bir i ,2

2,�2bi r i ,2r-

biri,2ri,3,�biri,3
3)T. Let h*=(log S0*,b*

T)T be the true value of

h and n, the number of DW images for each subject. Under

certain conditions [28,45], we can show that as nYl;
ffiffiffi
n

p

ĥh � h�
� �

converges to Z in distribution, where Z is a

normal random vector with mean zero and covariance

matrix Ah, denoted by N{0,Ah}. The covariance matrix Ah

is estimated as follows:
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where ei=log Si�zi
Tĥ is a residual and hi=zi

T(A
j�1

n

zjzj
T)�1zi

[32]. Because b is a subvector of h,
ffiffiffi
n

p
b̂b � bT

� �
converges

to N{0,Ab}, where Ab is the corresponding matrix of Ah.

We define / in the CL and CP measures for Eq. (5) as

follows:

/ ¼ acos S bð Þ= V bð Þ
ffiffiffiffiffiffiffiffiffiffi
V bð Þ

ph i� �
=3 ð15Þ

and S(b)2VV(b)3 [20]. If RA(b)N0, we have the following
equivalent relationships:

/ ¼ p
3
ZS bð Þ þ V bð Þ

ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
¼ 0Zk1 ¼ k2;

/ ¼ 0ZS bð Þ � V bð Þ
ffiffiffiffiffiffiffiffiffiffi
V bð Þ

p
¼ 0Zk2 ¼ k3:
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Notation

We introduce some notation as follows. Let f(b)be a

function of b. The first derivative of f(b) with respect to b is

a 6�1 vector given by Bb f(b).The second derivative of f(b)
with respect to b is a 6�6 matrix given by Bb

2f(b). For
instance, the (1,2)th element of the matrix Bb

2f(b) is
B
2f bð Þ

Bb1Bb2
¼ B

2f bð Þ
BD11BD12

. ATaylor expansion of f(b) at b* is given by

f bð Þ ¼ f b4ð Þ þ b � b4ð ÞT Bb f b4ð Þ
� �

þ 0:5 b � b4ð ÞT B
2
b f bVð Þ

h i
b � b4ð Þ; ð16Þ

where b*i is the ith element of b* and bV is a point in a

neighborhood of b*.

Asymptomatic null distribution of Ta(B̂)

We first study the asymptotic null distribution of

FA2(ĥ)=[I4(ĥ)�I2(ĥ)]/I4(ĥ) below. If the diffusion ellipsoid
is isotropic, then we have Ta(h*)=0 and BbTa(h*)=0. Using

Eq. (16), we can employ the delta method [46] to show that

nTa b̂b
� �

¼ 0:5I�1
4 b4ð Þ

ffiffiffi
n

p
b̂b � b4

� �T X
1

ffiffiffi
n

p
b̂b � b4

� �
� 1þ op 1ð Þ
� �

; ð17Þ

where op(1) denotes that a sequence of random vectors

converges to zero in probability, and A1=Bb
2Ta(h). It

follows from Eq. (4) that A1 is a constant matrix. Let

ci(i=1,: : :,6) be six eigenvalues of AbA1. As nYl,

nFA2(ĥ) converges to a weighted v2 distribution Z with

representation I4
�1(h*)A6

i = 1ciz i in distribution, where

zi(i=1,: : :,6) represents six independent v1
2 random varia-

bles and v1
2 denotes a v2 distribution with one degree

of freedom.

Asymptomatic null distribution of Tb(B)

For Tb(h), we can similarly establish its asymptotic

distributions under H0
(2). If the diffusion ellipsoid is oblate

in shape, then we have Tb(b*)=0 and BbTb(b*)=0. Using

Eq. (16), we can again employ the delta method [46] to

show that

nTb b̂b
� �

¼ 0:5
ffiffiffi
n

p
b̂b � b4

� �T X
2

b4ð Þ

�
ffiffiffi
n

p
b̂b � b4

� �
1þ op 1ð Þ
� �

;

where A2(b)=Bb
2Tb(b). Let ciV(i=1,: : :,6) be six eigenvalues

of AbA2(b*). As nYl, Tb(ĥ) converges to a weighted v2

distribution Z with representation A6
i =1ciVzi in distribution.

The last step is to estimate A2(b*). We suggest calculating

A2(b*) under the null hypothesis H0
(2). If k1=k2, then D=

k1I3�3�(k1�k3)e3
Te3. We can obtain estimates of (log

S0,k1,k2,e3)
T by minimizing the residual sum of squares

as follows:

logS̃S0; k̃k1; k̃k2; e3
� �

¼ argmin
Xn
i¼1

logSi � logS0 þ bir
T
i

�
� k1I3�3 � k1 � k3ð ÞeT3 e3
� �

ri
�2
: ð18Þ
Finally, we can obtain D= Ẽ1I3�3�(Ẽ1�Ẽ3)ẽ3
Tẽ3 and then

evaluate A2(h̃). Based on the preceding steps, we obtain the

estimated g1V for i=1,: : :,6. In our experience, this algorithm

has proven effective.

Asymptomatic null distribution of Tc(B̂)

For Tc(ĥ), we can similarly establish its asymptotic

distributions under H0
(3). In particular, it follows from

Eq. (16) that nTc
�
b̂b
�
¼ 0:5

ffiffiffi
n

p �
b̂b � b�

�T P
3 b�ð Þ ffiffiffi

n
p �

b̂b �
b*
�

1þ op 1ð Þ
� �

, where A3(b)=Bb
2Tc(b). Let ciU(i=1,: : :,6)

be six eigenvalues of AbA3(b*). As nYl, Tc(ĥ) converges
to a weighted v2 distribution Z with representation A6

i =1ciUzi
in distribution. We easily estimate Ab as discussed before.

The next step is to estimate A3(b*) under the null hypothesis

H0
(3). When k1=k2, we know that D=k2I3�3+(k1�k2)e1

Te1.

We obtain estimates of (log S0,k1,k2,e1)
T by minimizing the

residual sum of squares as follows:

logS̃S0; k̃k1; k̃k2; e1
� �

¼ argmin
Xn
i¼1

logSi � logS0 þ bir
T
i

�
� k2I3�3 þ k1 � k2ð ÞeT1 e1
� �

ri
�2
: ð19Þ

Finally, we obtain D= Ẽ2I3�3+(Ẽ1�Ẽ2)ẽ1
Tẽ1 and then

evaluate A3(h̃).
Approximation of P values

In each voxel, the P value of testing the isotropic

hypothesis can be calculated as:

p ¼ Pr
�
ZzTa

�
b̂b
��
: ð20Þ

The weighted v2 distribution Z can be approximated

by substituting the estimated ĝi(i=1,: : :,6). Instead of rely-

ing on the precise mixture distribution, we use the mo-

ment matching technique to match the mean and variance

of c0v
2(m) with those of Z, that is, c0m=A

6
i =1ci and

c0
2m=A6

i = 1ci
2, which gives c0=A

6
i = 1ci

2/A6
i = 1ci and m=

(A6
i =1ci)

2/A6
i =1ci

2. The scaled v2 approximation works well

in the test hypothesis for isotropy [47]. Similarly, we can

construct a scaled v2 approximation for Tb(ĥ) and Tc(ĥ).
Our procedures for computing the P values of the three

test statistics are:

Step 1. Compute û, Ah and Ab based on Eq. (14).

Step 2. Compute Ta(ĥ)=FA
2, A1 and the six eigenvalues

of A1Ab, ci(i=1,: : :,6).
Step 3. Compute Tb

�
b̂b
�
¼

ffiffiffiffiffiffiffiffiffiffiffi
V
�
b̂b
�q
V
�
b̂b
�
þ S
�
b̂b
�

and

estimate (Ẽ1,Ẽ2,e3) in Eq. (18). Compute D = Ẽ1
I3�3�(Ẽ1�Ẽ3)ẽ3

Tẽ3, A2(h̃), and the six eigenvalues of A2

(h̃)Ab, ciV(i=1,: : :,6).
Step 4. Compute Tc b̂b

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V b̂b
� �r

V b̂b
� �

� S b̂b
� �

and

estimate (Ẽ1,Ẽ2,e1) in Eq. (19). Compute D = Ẽ2
I3�3+(Ẽ1�Ẽ2)ẽ1

Tẽ1, A3(h̃), and the six eigenvalues of A3

(h̃)Ab, ciU(i=1,: : :,6).
Step 5. Compute c0 and m based on ci (i=1,: : :,6).
Approximate the P value by using

p ¼ Pr c0v
2 mð ÞNTa b̂b

� �� �
:
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Similarly, we can calculate the P value of for Tb(ĥ) (or
Tc(ĥ)) by using {ciV:i=1,: : :,6} (or {ciU:i=1,: : :,6}).
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