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Source Localization of Brain States Associated with
Canonical Neuroimaging Postures

Michael Lifshitz":**, Robert T. Thibault'** Raquel R. Roth', and Amir Raz"?%?

Abstract

W Cognitive neuroscientists rarely consider the influence that
body position exerts on brain activity; yet, postural variation
holds important implications for the acquisition and interpreta-
tion of neuroimaging data. Whereas participants in most behav-
ioral and EEG experiments sit upright, many prominent brain
imaging techniques (e.g., fMRI) require participants to lie supine.
Here we demonstrate that physical comportment profoundly
alters baseline brain activity as measured by magnetoencephalog-
raphy (MEG)—an imaging modality that permits multipostural
acquisition. We collected resting-state MEG data from 12 healthy
participants in three postures (lying supine, reclining at 45°, and
sitting upright). Source-modeling analysis revealed a broadly
distributed influence of posture on resting brain function. Sitting
upright versus lying supine was associated with greater high-
frequency (i.e., beta and gamma) activity in widespread parieto-

INTRODUCTION

Neuroimaging researchers tacitly assume that body
position has a negligible impact on human brain activity.
However, postural discrepancies may hold important
implications for brain function in general and for specific
imaging methodologies in particular (Thibault & Raz,
2016; Raz et al., 2005). Behavioral findings indicate that
body posture alters perceptual thresholds and cognitive
processing (Lipnicki & Byrne, 2008; Lundstrom, Boyle, &
Jones-Gotman, 2008). Moreover, converging evidence
demonstrates that posture regulates physiological factors,
including hemodynamics, and influences concomitant
neurocognitive function (Spironelli, Busenello, & Angrilli,
2016; Thibault, Lifshitz, & Raz, 2016; Thibault, Lifshitz,
Jones, & Raz, 2014; Benvenuti, Bianchin, & Angrilli, 2013;
Fardo, Spironelli, & Angrilli, 2013; Rice, Rorden, Little, &
Parra, 2013; Chang et al., 2011; Spironelli & Angrilli, 2011;
Ouchi, Okada, Yoshikawa, Nobezawa, & Futatsubashi,
1999; Cole, 1989). Comparing postures using a stance-
adjustable PET gantry, one study reported signal differ-
ences across a range of cortical and subcortical regions
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occipital cortex. Moreover, sitting upright and reclining postures
correlated with dampened activity in prefrontal regions across a
range of bandwidths (i.e., from alpha to low gamma). The ob-
served effects were large, with a mean Cohen’s & of 0.95 (SD =
0.23). In addition to neural activity, physiological parameters
such as muscle tension and eye blinks may have contributed to
these posture-dependent changes in brain signal. Regardless of
the underlying mechanisms, however, the present results have
important implications for the acquisition and interpretation of
multimodal imaging data (e.g., studies combining fMRI or PET
with EEG or MEG). More broadly, our findings indicate that
generalizing results—from supine neuroimaging measurements
to erect positions typical of ecological human behavior—would
call for considering the influence that posture wields on brain
dynamics. |l

(Ouchi et al., 1999). In addition, a few studies have found
changes in EEG signals as a function of posture (Spironelli
et al., 2016; Benvenuti et al., 2013; Fardo et al., 2013; Rice
et al., 2013; Chang et al., 2011; Spironelli & Angrilli, 2011;
Cole, 1989). An EEG effort from our group indicated that
orthostatic condition rapidly influences high-frequency
electrical activity across the cortex (Thibault et al., 2014).
In addition, we recently published a proof-of-concept anal-
ysis based on the present multipostural magnetoencepha-
lography (MEG) data set (Thibault et al., 2016). However,
this preliminary sensor level analysis could hardly eluci-
date how body position influences neural activity in specific
anatomical areas. Thus, here we used a source localization
approach to further examine the effects of posture at the
level of regional brain function.

Body posture may impact neural function through a
variety of physiological mechanisms. Gravity in the supine
position stimulates baroreceptors that reduce sympathetic
system activation (Mohrman & Heller, 2003), decreasing
noradrenergic output from the locus coeruleus (Berridge
& Waterhouse, 2003) and consequently dampening cor-
tical excitability (Rau & Elbert, 2001). In addition, supine
posture modulates respiration, regardless of age, by alter-
ing diaphragm function (Rehder, 1998). This caveat holds
special importance for independent component analysis-
based measures of resting-state functional connectivity,
which show substantial respiratory confounds (Birn, Smith,
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Jones, & Bandettini, 2008). Such postural nuances come to
the fore as researchers increasingly compare supine fMRI
findings with resting-state electrophysiological data from
EEG and intracranial recordings, often acquired in the
upright position (Lei, Hu, & Yao, 2012; Agam et al., 2011,
Lei et al., 2011).

MEG is advantageous for studying the effects of pos-
ture on brain activity because certain MEG systems offer
scanning capabilities across a range of body positions
(see Figure 1). In contrast, although upright MRI scan-
ners for humans exist, they tend to employ low magnetic
fields that often preclude functional sequences. More-
over, whereas previous studies of posture used either
PET or EEG, these methodologies lack integration of
high-resolution spatial and temporal signals. On the
one hand, PET provides reasonable spatial resolution
but crude temporal resolution via an indirect measure
of neural activity. On the other hand, EEG directly mea-
sures brain oscillations with millisecond precision but
offers poorer signal localization due to smearing of elec-
trical signals when passing through the cranial fluids and
tissues (Vorwerk et al., 2014). Here we leveraged MEG
localization analysis, which offers a direct measure of
oscillatory activity with high spatiotemporal accuracy, to
unravel the influence of body position on regional activity
throughout the cortex.

METHODS
Participants

Twelve participants (mean age = 26.4 = 4.2 years; six
women) provided written informed consent in accordance
with the research ethics board at the Montreal Neurological
Institute and in compliance with the Declaration of
Helsinki. Participants were right-handed, reported normal
or corrected-to-normal vision, and received customary
monetary compensation for their involvement.

Procedure

All sessions began with a 2-min empty room MEG record-
ing. We then tested participants for magnetic artifacts in a

brief preliminary MEG scan. For the main portion of the
experiment, participants transitioned among three pos-
tures (sitting upright, reclining at 45°, and lying supine)
in a counterbalanced fashion. For each posture, partici-
pants underwent two 8-min resting-state MEG scans,
separated by a brief (1-2 min) break in the scanner.
Throughout the MEG acquisitions, we instructed partici-
pants to relax, remain still, and fixate on a point directly
ahead while keeping their eyes open. We standardized
the visual environment by draping a white sheet around
their visual field.

Magnetoencephalography

We acquired MEG data using the VSM/CTF system (MEG
International Services Ltd., Coquitlam, Canada) at the
Montreal Neurological Institute. The sensor array con-
sisted of 270 axial gradiometers plus an additional nine
reference magnetometers and 17 reference gradiometers
farther from the helmet to remove environmental noise.
We recorded using a sampling rate of 2400 Hz inside a
dedicated scanning room with full three-layer passive
magnetic shielding, while head-positioning coils and a
3-D digitizer system (Polhemus Isotrack, Colchester, VT)
registered cephalic position throughout. In line with stan-
dard guidelines, we recorded electrocardiograms and elec-
trooculograms to capture heartbeat and eye-blink artifacts
(Gross et al., 2013). Between postures, participants left the
scanning room while an experimenter adjusted the angle
of the MEG dewar. We then waited for 15 min, followed
by a 2-min empty room recording, to ensure that the liquid
helium level outside the helmet and the temperature at the
sensors had stabilized. On the basis of tests of our MEG
system at the Montreal Neurological Institute, we deter-
mined that noise contamination from the sensors levels
off within 15 min (Figure 2 displays empty room and
participant-scan noise spectra for all dewar positions and
body postures). Whereas the helium boil-off rate increases
when the dewar is in the supine recording position, all
sensors remain submerged in liquid helium and the
temperature at each sensor remains constant.

Before the scans, we placed foam blocks between the
helmet and the forehead of participants to help reduce

Upright

Reclined [T

Supine

Figure 1. Posture and dewar positions.
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Figure 2. Noise spectra for participant and empty room recordings. The top six graphs depict the PSDs for each of the 270 gradiometers averaged
across all runs for each posture (for participant recordings, on the left) and each dewar position (for empty room recordings, on the right). The bottom
graph depicts the average across all 270 gradiometers for each of the above six conditions. As in our analysis, in this graph we removed frequencies
below 2 Hz as well as electrical contamination from 58 to 62 Hz. When performing our source analysis, we removed the environmental noise
detected before each participant recording by accounting for an empty room noise covariance matrix. For example, this analysis regressed out
the two blips around 20 and 50 Hz in the reclined empty room condition.

head motion, if needed. The exact placement of these
foam blocks depended on the size and shape of the indi-
vidual head. We instructed participants to position their
head such that they were touching but not pressing
against the top of the helmet. Recently acquired T1-
weighted anatomical MRI volumes helped map head
position relative to the helmet. To facilitate the analysis,
we down-sampled the high-resolution triangulated corti-
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cal surfaces to 15,000 vertices in line with standard pro-
tocol (Baillet, Mosher, & Leahy, 2001).

Data Processing

We processed and analyzed MEG data using Brainstorm
(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). We ap-
plied a high-pass filter at 0.1 Hz and removed potential
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electrical contamination using a sinusoidal (notch) filter
at 60, 120, 180, and 240 Hz. We then removed cardiac
sources and contamination from eye blinks and eye
movements by designing signal-space projectors (SSPs).
Each SSP was specific to a particular run. We removed
one cardiac and one blink SSP from each run to maintain
comparable cleaning procedures and levels of back-
ground data subtracted between postures. We then visu-
ally inspected all data and discarded segments with any
lingering ocular or cardiac contamination as well as
high-amplitude muscle artifacts. We discarded data seg-
ments in which either of the two head localizer coils (left
and right pre-auricular points) was farther than 5 mm
from its position at the beginning of the recording; on
average, participants moved their head less than 2 mm
by the end of the recording (see Figure 3). We calculated
a noise covariance matrix from each of the 36 empty
room recordings (i.e., 12 participants by three postures).
Each baseline noise recording was then applied to the
corresponding participant recording to tease apart fluc-
tuations in instrumental and environmental dynamics
that the sensors detected in the empty room (Tadel
et al., 2011). This procedure minimizes the potential in-
fluence of noise differences associated with different
dewar positions.

We computed a head model of the cortex surface for
each run using overlapping spheres and proceeded to

compute sources using the whitened and depth-weighted
linear L2-minimum norm estimates (wMNE) algorithm
implemented in Brainstorm. To normalize sources across
participants, we projected (warped) the sources from
each participant onto the MNI/Colin27 template brain
(Collins et al., 1998). The algorithms responsible for this
transformation from sensor level data to source-space
activity take into account head placement in relation to
sensor location and thus compensate for differences in
head size between participants and head placement
across runs. We then calculated the power spectrum den-
sity (PSD) for each run at all 15,000 vertices on the tem-
plate brain for delta (8) 2—4 Hz, theta (8) 4-8 Hz, alpha (o)
8-14 Hz, beta (B) 14-30 Hz, low gamma (y1) 30-58, and
high gamma (y2) 62-90 Hz using 50% overlapping
windows of 2-sec epochs. We then divided these 15,000
vertices into 68 cortical regions as per the Desikan—Killiany
neuroanatomical atlas (Desikan et al., 2006). We averaged
the PSDs across all the vertices in each scout to obtain 68
averaged PSDs.

Statistical Analysis

We first calculated the average of the two runs for each
participant in each posture. Using the R statistics pack-
age, we conducted two-tailed paired sample ¢ tests on
the logarithm of the power of the current density for

Figure 3. Head displacement
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Figure 4. Posture-dependent changes in regional brain activity. Colored brain regions show areas where ¢ tests revealed source level power
differences when contrasting sitting upright against lying supine (mapped on the Desikan—Killiany neuroanatomical atlas). Red (g < 0.05) signifies
greater oscillatory activity when sitting upright, whereas blue (g < 0.05) signifies lower activity when sitting upright. Each column presents one

brain map viewed from six different angles.

each Desikan—Killiany region (Desikan et al., 2006) for
each bandwidth, for a total of 408 (68 regions by six
bandwidths) p values per contrast (i.e., sitting upright
vs. lying supine, sitting upright vs. reclining at 45°, reclin-
ing at 45° vs. lying supine). To account for multiple com-
parisons, we calculated adjusted p values (g values) using
the false discovery rate function from the gvalue package
available in R (Storey, Bass, Dabney, & Robinson, 2015)
for each of the three contrasts. For the empty room re-
cordings, we repeated this analysis for the PSD values
obtained from each magnetic sensor, rather than from
the Desikan—Killiany regions used for the participant re-
cordings (due to the absence of a head in the dewar) and
found no statistical difference between postures. We also
performed one-tailed paired sample ¢ tests on heart rate
for each contrast.

RESULTS

Our main contrast of interest investigated differences in
oscillatory power across the whole brain between sitting
upright and lying supine. For this contrast, we conducted
408 ¢ tests (68 scout regions by six bandwidths). Of these

1296 Journal of Cognitive Neuroscience

tests, 76 yielded significant differences in brain signal
(corrected for multiple comparisons, g < 0.05). Figure 4
displays the significant brain regions and frequency
bands for the contrast between sitting upright and lying
supine. Table 1 further lists the anatomical label, effect
size, and amplitude difference for each of the significant
regions at each bandwidth. The mean Cohen'’s d for these
significant effects was 0.87 (SD = 0.28), indicating large
effect sizes.

In addition to our primary analysis, we also investigated
power differences associated with reclining by conducting
two contrasts (408 ¢ tests for each): (1) reclining versus
lying supine and (2) reclining versus sitting upright. In
the reclined versus supine contrast, 16 of the 408 ¢ tests
yielded significant changes in brain signal (corrected for
multiple comparisons, g < 0.05; see Table 2). The effects
were large, with a mean Cohen’s & of 1.33 (SD = 0.28).
Although this mean effect size was notably larger than in
the sitting upright versus lying supine contrast, the ampli-
tude of the changes was similar (compare Tables 1 and 2).
Thus, the difference in effect size likely reflects a dif-
ference in variance. When comparing between sitting up-
right and reclining, we found a significant difference in

Volume 29, Number 7



Table 1. Sitting Upright versus Lying Supine

Delta Theta Alpha Beta Gamma 1 Gamma 2
Desikan—Killiany Region d A d A d A d A d A d A
L temporal pole 0.92 —0.50 1.08 —0.41 0.74 —0.32 0.75 —0.32
L rostral anterior cingulate 091 -049 088 —-034 080 —-033 077 —-031 073 —0.09
L medial orbitofrontal 090 —-054 117 —-043 098 —-039 097 -039 076 —0.12
L fusiform 0.88 -034 079 —0.26
R pars triangularis 0.86 —0.33 1.24 —0.31 1.16 —0.21
R inferior parietal 0.86 0.29 0.82 0.16  0.99 0.14
L entorhinal 0.85 -0.44 079 —-035 090 -0.28 085 —0.28
R medial orbitofrontal 080 —041 094 -031 083 —027 073 —-0.11
L lateral orbitofrontal 0.79 -047 095 —0.30
R cuneus 0.78 0.42 0.74 0.18
R rostral anterior cingulate  0.76 -0.37
R rostral middle frontal 0.76 -036 091 -0.31 0.76 -0.29
R parahippocampal 0.82 —0.20
R pars orbitalis 0.81 —0.24
R lateral orbitofrontal 0.76 -0.25
R pars opercularis 0.78 —0.24
L inferior parietal 0.80 031 085 0.24 1.22 0.20
L supramarginal 0.72 0.20 0.90 0.25 1.04 0.28
R frontal pole 1.33 —0.24
L frontal pole 1.11 -0.26 071 —0.18
R supramarginal 1.06 0.12 1.22 0.15
L transverse temporal 0.88 024 092 0.29
L banks sts 0.80 0.22 0.99 0.24
L lateral occipital 0.78 028  0.94 0.27
L pericalcarine 0.76 028 085 0.27
R pericalcarine 0.74 026 0.80 0.24
L cuneus 0.72 0.26 0.80 0.20
L postcentral 0.94 0.21
L posterior cingulate 0.92 0.12
R posterior cingulate 0.79 0.09
L precentral 0.77 0.19
R caudal anterior cingulate 0.77 0.09
R precuneus 0.76 0.17
R postcentral 0.75 0.09
L superior parietal 0.74 0.14
R banks sts 0.74 0.17
R lateral occipital 0.71 0.23
L precuneus 0.71 0.16

This table lists Desikan—Killiany neuroanatomical regions that showed a significant difference in oscillatory power in the contrast of sitting upright versus lying
supine (g < 0.05). Each result includes effect size (Cohen’s &) and the amplitude of the difference (A) in log((A-m)°).

Lifshitz et al.
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Table 2. Reclining versus Lying Supine

Delta Theta Alpha Beta Gamma 1 Gamma 2
Desikan—Killiany Region d A d A d A d A d A d A
L temporal pole 115  —0.48
R medial orbitofrontal 120  —0.44
R rostral anterior cingulate ~ 1.20  —0.47
L lateral orbitofrontal 125 —-048 114 —0.26
L medial orbitofrontal 128 —0.65 167 —044 158 —0.37
L insula 126  —0.27
L lingual 127 =025
L rostral anterior cingulate 1.41 —0.53
L inferior temporal 1.48  —0.36
L fusiform 185 =035 127 -0.26
L parahippocampal 1.13 —0.22
R frontal pole 1.10 —0.23

This table lists Desikan—Killiany neuroanatomical regions that showed a significant difference in oscillatory power in the contrast of reclining
versus lying supine (g < 0.05). Each result includes effect size (Cohen’s @) and the amplitude of the difference (&) log((A-m)°).

only one region at one bandwidth. For a comprehensive
list of all effects, including nonsignificant effects, please
see the Supplementary Materials (available from https://
razlab.org/links/koSxUa).

Heart rate was greater in more upright postures (sitting
upright: 70.7 beats per minute; reclining: 68.8 bpm; lying
supine: 64.6 bpm). Using a Bonferroni corrected o = .017,
only the difference between sitting upright and lying
supine (p < .001, d = 1.33) and reclining and lying
supine (p = .015, d = 0.72) met significance (sitting
upright vs. reclining: p = .05, d = 0.52). As an exploratory
post hoc analysis, we tested whether between-posture
differences in heart rate correlated with between-posture
differences in oscillatory power (using Pearson’s correla-
tion coefficients at each neuroanatomical region and
bandwidth). These analyses yielded no significant correla-
tions, yet the results remain inconclusive because the
relationship between heart rate and brain activity may
be nonlinear and this analysis underpowered.

DISCUSSION

This study leverages multipostural MEG to unravel how
body orientations associated with prevalent imaging pro-
cedures (e.g., sitting upright in EEG vs. lying supine in
fMRI) impact resting-state brain activity. Extending pre-
vious sensor level findings (Spironelli et al., 2016;
Thibault et al., 2014, 2016; Benvenuti et al., 2013; Fardo
et al., 2013; Rice et al., 2013; Chang et al., 2011; Spironelli
& Angrilli, 2011; Cole, 1989), here we report a source
level MEG analysis revealing that sitting upright, com-
pared with lying supine, was associated with greater

1298  Journal of Cognitive Neuroscience

power in high-frequency bands (i.e., extending from beta
to high gamma) in a wide swath of parieto-occipital cor-
tex. Furthermore, prefrontal oscillatory power was damp-
ened in the upright-seated position to varying degrees
depending on the bandwidth (with effects ranging from
delta to low gamma bands). Beyond our primary analysis
contrasting sitting upright versus lying supine, we also in-
vestigated brain activity associated with reclining at 45°.
When comparing reclined to supine posture, we found
power differences in frontal regions, which largely over-
lapped with the effects from the lying supine versus sit-
ting upright contrast. On the other hand, we hardly found
any significant brain changes between reclining and sit-
ting upright. Effect sizes were large across all significant
tests, with a mean Cohen’s d of 0.95 (SD = 0.23). This
overarching pattern of results indicates that the oscilla-
tory dynamics of the resting brain differ dramatically be-
tween supine posture and more upright body positions.
EEG studies have associated high-frequency activity
with cognitive processing (e.g., alert mental states; Kaiser
& Lutzenberger, 2005) and lower-frequency activity with
relaxation (e.g., drowsy states; Strijkstra, Beersma,
Drayer, Halbesma, & Daan, 2003). Thus, the present find-
ings suggest that the brain may linger in a mode of de-
creased vigilance when supine compared with when
upright. In line with this interpretation and related ac-
counts (e.g., Jones & Dean, 2004), our electrocardiogram
data showed lower heart rate in the supine posture.
Our present findings accord with previous reports in-
vestigating the influence of posture on resting-state brain
function. The collective evidence indicates that upright
postures are associated with greater power in high-
frequency bands (Thibault et al., 2014; Chang et al., 2011,
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Cole 1989) and reduced power in low-frequency
bands (Spironelli et al., 2016; Chang et al., 2011). Our
earlier sensor level analysis of the current data set also
showed high-gamma increases in more upright postures,
but these effects were restricted to smaller regions of
the left hemisphere (Thibault et al., 2016). In sensor level
MEG analysis, however, variation in head distance from
the sensors presents a substantial confound (see discus-
sion in Thibault et al., 2016). This methodological caveat
may explain why our earlier sensor level analysis was
unable to pick up the more robust, distributed effects
we observed here using a source localization approach.

In terms of regional brain activity, our present obser-
vations coalesce with the findings of an earlier account
using multipostural PET (Ouchi et al., 1999). Congruent
with our observation of greater upright gamma power in
parieto-occipital areas, this PET study reported increased
cerebral blood flow to visual areas when standing upright
compared with when lying down. Yet, here we observed a
more distributed pattern of high-frequency activity—
extending beyond the visual areas to a large portion of pos-
terior cortex. In addition, we found differences in low-
frequency bands among frontal regions, which were absent
from our previous EEG results (Thibault et al., 2014). In
that EEG study, however, participants assumed body posi-
tions for shorter time periods and received instructions
from experimenters every 30 sec to change behavioral con-
dition (e.g., to open or close their eyes for the next block).
Thus, participants may have had less time to settle into a
relaxed state during the supine position, which may have
limited the differences in low-frequency power between
postures. Of particular interest, the present source analysis
revealed alterations in core regions of the default-mode
network (e.g., posterior cingulate, precuneus, inferior pari-
etal lobule, parahippocampus, rostral anterior cingulate),
which has been proposed as a central hub of anatomical
and functional organization in the human brain (van den
Heuvel & Sporns, 2013).

Certain physiological parameters may have played a
role in shaping our results. Muscle activity exerts an influ-
ence on signals in the gamma range (Muthukumaraswamy,
2013) and thus might have contributed to the posterior
high-frequency activity. In addition, persistent eye-blink
artifacts might have survived our standard data cleaning
procedures and thus contributed to the orbital activity.
On the other hand, systematic differences in head posi-
tion are unlikely to explain the present results. Although
the back of the head might have been closer to the sensors
in the supine position, our source-space analysis accounts
for variations in head placement using participant-specific
3-D digitization of cranium size and shape, head localizer
coils, and MRI-guided anatomy per individual. Moreover,
we would expect opposing results in frontal versus parieto-
occipital regions if a consistent shift toward occipital
head placement drove neural difference. In particular, we
would expect higher occipital signal in the supine posture
because these regions would be closer to the sensors. In-

stead, our results show lower parieto-occipital power in
the supine posture. Regardless of the underlying causes,
the alterations we observed hold broad implications
for the field of neuroimaging.

Orthostatic caveats take on particular importance as
the domain of cognitive neuroscience moves toward tri-
angulating data from multiple imaging modalities involv-
ing different body stances (Calhoun & Sui, 2016; Garcés
etal., 2016; Agam et al., 2011; Lei et al., 2011). Even within
the realm of MEG, posture varies from study to study:
whereas upright positions are most typical, supine mea-
surements are also common in multimodal imaging con-
texts (e.g., Carhart-Harris et al., 2016; Larson-Prior et al.,
2013) and when investigating specific clinical populations
(e.g., epilepsy: Pellegrino et al., 2016; multiple sclerosis:
Schoonheim et al., 2013). Unfortunately, many a MEG
report neglects to specify the acquisition posture. In
addition, our main finding that upright posture is asso-
ciated with higher parieto-occipital gamma power has
direct relevance for comparisons between upright EEG/
MEG data and supine fMRI scans. Intracranial, EEG, and
MEG recordings have implicated gamma band activity in
a host of cognitive functions including attention, memory,
and sensory processing (Jensen, Kaiser, & Lachaux, 2007).
Moreover, our MEG data are relevant for fMRI studies
because the BOLD signal, which serves as a proxy for
neural activity in fMRI, correlates with gamma activity
(Nir et al., 2007; Niessing et al., 2005). Our findings thus
highlight how sitting upright or lying down—body posi-
tions associated with common imaging modalities—
impact the resultant data acquired via those technologies.
The current account paves the road to a more scientific
understanding of posture as a ubiquitous, albeit little ac-
knowledged, procedural caveat in cognitive neuroscience
research.
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